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TECHNICAL NOTE 3640

A METHOD FOR DEFLECTION ANALYSTIS OF THIN
LOW-ASPECT-RATIO WINGS

By Manuel Stein and J. Lyell Sanders, Jr.
‘SUMMARY

A method is presented for obtaining influence coefficients for thin
low-aspect-ratio wings of built-up construction. Chordwise deflections
are assumed to be parabolic (or linear) and the principle of minimum
potential energy is used in conjunction with difference equlvalents to
obtaln an appropriate set of equilibrium equations. Symmetric and anti-
symeetric load-support conditions are considered. A simple method is
given for taking account of attachment to a flexible fuselage. The com-
putations involved are for the most part organized into matrix form so
as to be suiteble for high-speed computing machines. The matrices
needed at the beginning of the computing process can be set up directly
from the date of the wing design.

INTRODUCTION

The simple beam theory based on the concept of an elastic axis with
uncoupled bending and twisting distortions has long been successfully
applied to high-aspect-ratioc unswept wings. However, the assumptions
upon which the simple beam theory is based invalidate its application
to low-aspect-ratio wings. In the case of a low-aspect-ratio wing,
bending and torsion are not uncoupled; among other things, there appears
the additional complication of chordwise bending. Thus, the development
of an adequate load-deflection analysis for use in predicting the sero-
elastic behavior of an airplane with low-aspect-ratlo wings has become
an important structural problem.

Several approaches to the solution of this problem have appeared in
the recent literature. Tn a method introduced by Levy (ref. 1), the wing
is idealized into a network of crisscrossing beams to represent ribs end
spars with four-sided torsion boxes attached at their Tour corners to the
intersections of the beams to represent the shear-carrying capascity of
the skin. (See fig. l1.) An effective width of the skin is allotted to
the beams to account for its direct-stress-carrying capacity. A stiffness
matrix (or inverse influence-coefficient matrix) is found for the composite
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structure by properly combining the stiffness matrices of the various
components. The influence-coefficient matrix of the composite structure
is obtained by inverting the stiffness matrix of the composite structure.
The method 1s meant to be applicable to thin wings with thin cover sheets.

In the "wide beam" theory imtroduced by Schuerch (ref. 2), the wing
is idealized into a bundle of alternating simple beams and torsion tubes
running in the spanwise direction. (See fig. 2.) The beams represent
the spars and axial-load-carrylng capacity of the skin. The torsion tubes
represent the shear-carrying capaclty of the skin. The bundle is tiled
together by ribs which are assumed rigid. The individual beams and tor-
sion tubes are assumed to behave according to simple beam theory. The
equations of moment and torque equilibrium for the ldealized structure
are two simultaneous differentisl equations (both of the fourth order)
for the deflectlion and rotation of the cross sections. These equatlons
are not uncoupled as in simple beam theory, and several new section prop-
erties appear. This method, presumably, 1s meant to be applied to thin
wings with thin cover sheets. In reference 3 Schuerch and Freelin have
presented another method which is somewhet like that of Levy's.

In_recent papers, Williams (refs. L4 and 5) has outlined a method for
thick-skinned thin wings with closely‘spaced spars and ribs (the effec-
tiveness of which 1s included in the skin). In this method, the partial-
differentisl equations of plate theory are assumed to be applicable. The
differential equatlons are replaced by difference equations in which the
unknowns are the "deflections at a large number of lattice points spresd
over the wing. The method is very much like a relaxation method except
the "relaxing" is done all at once and for any load distribution by means
of a matrix Inversion.

Other methods of a quite different neture exist for analyzing low-
aspect-ratio wings, namely analog methods. These range anywhere from
testing a model of the wing to building an ‘electrical asnalog of an ideal-
ized wing structure as in the method of MacNeal and Benscoter (ref. 6).

The method to be described in the present paper is an analytical one
and is essentially an extension to bullt-up wings of s method developed
for thin solid wings by Reissner and Stein in reference 7 and by Stein,
Anderson, and Hedgepeth in reference 8. The chief difference between the
theories of Ievy, Schuerch, and Willlams and the present theory is that
they simplify the problem by idealizing the structure whereas the spproach
of the present paper is to simplify the problem by idealizing the defor-
mations. The gpplication of the method is therefore not limited to any
specific range of skin thicknesses.

The plate-like nature of the thin low-aspect-ratlo wing suggests the
adoption of some of the assumptions of plate theory. Accordingly, in
this paper, the displacements of the material points of the wing are
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assumed to be expressible in terms of the vertical displacements of a
neutral surface. (See fig. 3.) The material points on a normal to the
undeformed neutral surface are assumed to remain on that normal during
deformation of the wing. Furthermore, the deflections of the neutral
surface are assumed to be either linear or parabolic in the chordwise
direction (both theories are treated in this report), but are otherwise
unrestricted. An appropriste set of equilibrium equations is obtained
by using the foregoing speclificetion .of displacements in conjunction with
the principle of minimum potential energy. By gpproximating the energy
integral by a finite sum in which all derivatives in the integrand are
expressed in difference form, the minimization process leads to equilib-
rium equations in matrix form.

Specific directions for setting up the required matrices from the
"raw" data (for example, from drawings of the wing) are given. Two
load-support conditions are considered fundamental, namely, symmetric
and antisymmetric. In each of these two cases, a set of influence
coefficients 1s derived for a wing that is assumed to be supported in
& particular way speclifically chosen to facilltate routine gpplication
of the method. (See fig. 4.) A procedure is then given whereby these
influence coefficients may be modified to obtaln those appropriate to
many other kinds of support including pin-Jjointed mounting on a flexible
fuselage.

SYMBOLS

CQ(Y)
8y - stiffness coefficient for cover plates, Dikdx
Cl(Y)

e1(¥), ep(y) functions defining plan form (see fig. 5)

D local flexural stiffnesslof wing given by equation (5)
E modulus of elasticity of material

I moment of inertia of spar or rib

;; g: :: ;} integers

1 semispan

N number assigned to station at tip of wing, 1 = Ne

P load at mth reference point on chord at nth station

n,m
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€
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transverse load per unit area . ' - : _
thickness of a cover plate .=
thicknesses of upper and lower cover plates, respectively

deflection at mth reference point on chord at nth station . —

lateral deflection of wing (see fig. 3)
coordinstes defined in filgure 3

function defining location of sth spar or stringer (see fig. 5)
spanwise location of rth rib or stiffener . o -

distance from neutral surface to upper and lower cover plates,
regpectively

spar or stringer stiffness coefficlent . —

rth rib or stiffener stiffness coefficient

strain in stringer; distance between equally spaced stations
components of normal and shearing strain in cover plates

coefficients of rigld body translation eand pitch, respectively

angle of sweep of gpar or stringer (see fig. 5)

Poisson's ratio . -

distance from y-axis to mth reference point on chord at .
nth station (see fig. T)

deflection coefficlents (see eq.- (1))

energy
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METHOD OF ANALYSIS

The structure considered in this paper is a thin wing of low aspect
ratio built up of cover sheet, spars, ribs, and stiffeners. The carry-
through structure is considered to be part of the wing. The wing is
supposed to be internally stiffened so that transverse shear deflections
can be neglected. It will be assumed that there 1s a neutral surface
which does not stretch (or at least that its stretching is negligible).
Then, since transverse shears are neglected, normals to this neutral sur-
face will remain normal during bending of the wing. Under these condi-
tions, the displacements of all material points in the wing are expressible
in terms of the lateral deflections of the neutral surface, assumed to be
given by the equation (see fig. 3)

w = go(y) + 2 (¥) + xPou(y) (1)

The potential-energy function which is to be minimized is the dif-
ference between the strain energy and twice the work of the external
loads. But before the minimization process is carried out the potential-
energy functlon is expressed in discrete form by writing all derivatives
as differences and all integrations as numerical integrations (by the use
of the trapezoidel rule or suitable variations thereof). The unknowns in
the expression then become the values of Pgs  Pps and 95 at a number

of statlons along the span. After properly accounting for geometric
boundary conditions, minimization of the potential-energy function with
respect to each of the unknowns leads to a system of simultaneous algebraic
equations which can be written in matrix form. The unknowns in this system
of equations are the Py values at the station points; terms on the right-

hand sides of these equations are derived from the loading. The system is
solved by a matrix inversion.

Strain- and Potentlal-Energy Expressions

The first step in the procedure is the calculation of the strain
energy of the wing in terms of the deflection of the neutral surface.
The energies of the verious components of the wing will be considered
separately.

Covers.- The strain energy of stetching of one cover plate (say the
upper) is given by
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ff l-n[(ﬁx+ey) +2(l-p,)(:|..-)rxy -€e)]dxdy (2)

The coordinate system chosen in the plan form of the wing is shown in
figure 5 together with the definitions of c¢3, cp, and 1. The thick-

ness of the upper cover plate +t,; may be a function of x and Y.

According to the fundamental assumptions, the middle-surface strains in
the cover are given in terms of the deflection w of the neutral sur-
face by

= - 52 = - QEK = 2 _§£3L_
€x Zuaxz €y Zuay2 Txy Zuax Sy (3)

vhere 2z, W zu(x,y) is the distance from the neutral surface of the wing
to the middle surface of the upper cover plate (zu is assumed to be &

slowly varying function of x and y). In terms of w, the strain energy
of gtretching of both cover plates is

L S
Hc-‘ff ( a—3’21’-)+2(1-p) (r‘gy) 'a:‘zig;zi dx dy

where

D(x,y) =

3 _Epz (l;u'zu2 + tzzf) (5)

in which the subscripts u and 1 refer to the upper and lower covers,
respectively. The straln energy of bending of the cover plates can be
neglé&cted if the thickness of the cover plates is small in comparilson
with the thickness of the wing. This simplification has been assumed
here.

When the expression for w given by equation (1) is introduced into
equation (%), the integration with respect to x may be carried out; the
result is
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1l : 2
e = 3 f {ag (q>o")2 + 28799 ;" + 85 [(cpl”) + 2ch"CP2"j| +
0

2&3@1_"@2" + a)-l.(q)zu)Z + l"a-o(P22 + h#(aoCPo" + alan * achz")ch +

2(1 - ) [ao(cpl')e + beyopr'gp" + 11‘32(@2')2:‘} dy (6)

where the primes indicate differentiation with respect to y and

C2
g (y) =\/ﬂ DcFax (7)
c1

Spars and stringers.- The strain energy of a spar (or stringer)
ruming from yy to y; at an angle A to the y-axis is

P(rye) -\2 PRy
%f EI(a)(j%) & = %f B(d—g) &y (8)
e (¥g) Yo
where p 1s distance along the spar,
B = EI(y) cosd\ (9)

and ¥#(y) = v[x(y),y] where x = x(y) 1is the equation of the line
along which the spar lies (see fig. 5). The moment of inertia I is
calculated for sections normal to the lengthwise direction of the spar

about an axis lying in the neutral surface of the wing. In terms of
Pos @1, and @y, the strain-energy expression for a spar (or stringer)

is

Iig =

1
[ e [0 + (xa01) " + (xe%02)"] %ar (10)
Yo

roj-

where the subsecript 8 1is used to identify the spar or stringer.
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Ribs and chordwise stiffeners.- The strain energy of & rlb (or
chordwise stiffener) locasted at y = yp is

°2(yEJ 2 Z
II,. = % f Ezr@—xz%) dax (11)

cl(yr) Y=y

2,

where Ir(x) is the moment of 1lnertias of the rib about the neutral
surface. In terms of Do the expression for TII,. is

I, = %7r¢22 (yr) (12) _

where ( ) o . : .
eoly.

Ve =L f B EI,. dx (13) =
cl(yr)

Loads.- The potential-energy function of the transverse loads of
intensity p 1is -
1l
1L = -f f pw dx dy (14)

0 Cl

A more explicit form for TII, when the loads are concentrated is
given later.

Pinite~Difference Forms

The potential-energy functlon which is to be minimized to obtain
approprigte equilibrium equations is

IT = T, + p_ Tg+» I+ I (15)
s : r

An gpplication of the calculus of varlations at this point would lead to
differential equations of equilibrium which could then be put in difference
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form; however, it is easier to proceed to these directly. The minimize-
tion process leads directly to a set of simultaneous linear algebrsic
equations for the Py velues at discrete points along the span when the

derivatlves occurring in the expression for II are replaced by finite
differences and the integrations are replaced by finite sums. In this
paper, the stations along the span of the wing are equally spaced and
numbered from n = 0 gt the center line to n =N at the tip. There
are also stations corresponding ¢ n = -1 and n =N+ 1. (See fig. 6.)

The following difference approximations for first and second derivatives
are used:

(df) ~Tny1 - %y
/e k €

|

(daf) o~ Tnel -2+ Th
n

ay2 2 )

€

where n indicates the station and e is the distance between stations.
Integrals are approximated by finlte sums according to the trapezoidal
rule or, if necessary, by some appropriate modification thereof. Thus,
the discrete form of the contribution to II. (see eq. (6)) due to a

typical term involving a second derivative is
1 L 2 1 1l 2
b
Efo % (90") "% = S5515%0,0(%0,-1 - 20,0 + %0,1)" +

2

8,1 ®0,0 = 2,1 + P,p) * ¢ - -+
- 29 + )2 +

20,N-1\%0,N-2 0,N-1 * PO,N

%aO:N(q)O’N-l - 2Po,N t+ %,N+l)2] (17)
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or due to a typical term involving a first derivative is

1 .
%j; 2(1 - P-)aO(cPl')ady = = ; S ao’%_(‘Pl,l - (Pl,o)z t oo o+

BN~ %(‘pl,N - “’1,1\:-1)22 (18)

The discrete form of the other terms entering into the expression
for II. may be written in a similar way; they are omitted here for
simplicity. These equations are valld if the ayx values are continuous

functions of y. However, discontinuitlies due to cutouts, reinforcement,
end so forth may occur, in which case some provision for modifying the
trapezoidal rule to improve its accuracy when applied to discontinuoug
functions should be made. This correction can be made by replacing the
values of a; at the station nearest the discontinulty by modified

g, Vvalues according to a simple rule which will be given later. For a
typical spar which begins, for example, at station n, and ends at sta-

tion ny, the energy may be written in the following way. First let

= 2
Xs,n =%, t xs,n,q)l,n * X5,m cP2,n (19)

Vg,n = Xg,n-1 ~ zxs,n + xs,n+l (20)
Then, from equation (10),
_ 10 2 | 2
I = 5(§Bs,n0’”s,no * Bs,n0+lvs,no+l T ot

2,1 2
Bs,nl—l\ys,nl-l + §Bs,nlws,n1_) (21)
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which may be wrltten

_ 1 (= a 2
e = 5f6s a0+ - - - * Be o) (22)

where the definition of ES in terms of Bg 1s obvious by a comparison

of equations (21) and (22). In case the spar does not end exactly at
station ny (or ng), the value of By at station n; (or ny) must be

redefined to take this into account; the exact definition is given later.
In any case, formula (22) will still hold if 3s,n is properly defined.

For a rib at y, = (ng + dp)e, the energy I, is

I, = %7r {( = dT)CPE,nO + drq72,no+];le (23)

where O £ d, S 1. Here linear interpolation has been used to obtain a
value of ¢, between stations.

Boundary Conditions

The energy expressions in the last section involve Py values at

stations -1 and N + 1; the disposition of these terms depends on the bound-
ary conditions. The support system should be chosen so that the boundary
conditions take a simple form and so that the generality of the result

is not restricted; that is, the influence coefficients appropriate to the
chosen support system must be such that influence coefficients appropriate
to any other support system can be derived from them (as 1s not the case
for cantilever support, for example). For deriving a set of influence
coefficients for symmetrie losding, the wing is considered to be clamped at
the origin. (See fig. 4(a).) The conditions on @, are
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or in difference form

L]

%,0=%,0=°% %,.1"%,1 P,.1=%1 P, %1
(25)

In the antisymmetric case the wing is consldered to be simply supported
at the points (x=0,y=tc) and constrained (reactionlessly) so that the
center line does not deflect. (See fig. 4(b).) In difference form

®0,0 = 1,0 = P2,0 = P,-1= Po,1 = © Pr,1= P11 9,17 Pon
(26)

At the tip there are no geometrical contraints and hence no restric- -
tlons on the values of Py °F Peomil to be enforced. The equations
2 S+

_OIT _ _ (27)
P, e 1

could be uged to eliminate the three unknowns Py N+l from the energy
2
expression, but it is much simpler to retaln them as unknowns.

Matrix Form of Equilibrium Equstions

The final form of the equilibrium equations cbtained by minimizing
the potentigl-energy function II subJect to the boundary conditions will
be given in this section. The derivations of the results are mostly a
matter of routine but lengthy aslgebra, and they have been omitted from the
paper except for an example derivation glven in appendix B.

The equations

oIL _ o (28)
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lead directly to the matrix equation

[4] [s] = <[] (29)

or in expanded form

ero L h’o- N
bo A Aplle| = €y (30)
_Azo Aoy Ay J _CPEJ _Pe_

The definitions of the matrices [Aij] are given as follows (in which
Primes indicate the transpose of a matrix):

]

P+ 5 Bl bl + 20t - wree o ][]

]+ 37 ] ][]+ 22 - w02 o] ]+ s
bee] = fef ] ] + 3 ] ]+ 0 - wree ) o ]+

w2 (B B + ()} ] + o5 [
N o = E % [ |

r (31)
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The definitions of the matrices entering into the right-hand sides
of equations (31) and the Ey] and [p] matrices in equation (30) depend
on the boundary conditions. They are as follows (where the number of
rows and columns, in that order, are indicated below the equation number):

For the symmetric case:

2 2 1 T
1 2 1
1 -2 1
= o] = c. 32
o] = [po] (N+1)x(1$r+1g
: 1 2 1
1 -2
. il
B .
2 1
2 2 1
1 2 1
bo] - e (33)
e (w+2)x(N+1)
1 -2 1
1 -2
b l_
- -
1 -1
D] = C. "
[ 5} 1 -1 (N+£?x%
1
! o




15

NACA T 3640
-, ]
1 -1
1 -1
B . (35)
[Du] = (W42 XN
1 -1
1
L 0.
. 1
a,1
&x,2
. . L[] (56)
[ak] = (W+1)x (1)
8%,N-1
1
58k, N
! =
3%,0
8,1
ak,2
4 . (37)
[ak] = (N+L)x(N+2)
8y N-1
Zay y O
i =
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Ea
s

0,1

80,2

80,N-1

8 ,N-

BS,N_
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(38)
NN

(39)
(N+2)x(N+2)

(40)
(N+1)x(N+1)
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rxa,--:.+=‘:a,1 -2xg,)  Xg,1

Xg,0 “Dg.p Xg,2

%g,5 ~%g,3 Zg,3

Xy N-1 ~Xg,N-1 Xg,N-1

xg,N ~Pg,N
xs,N+ld _
-2"a,o2 15,02
xg,-10 + 35,17 -2xg 1% xg,1°
xs,22 -sz,aa xs,22
%g,30 %57 Xg,3
xs,N-la -2"3,1(-12
%5, 50

17

(k)
(N+1)x(N+1)

(N+2 )x(l({tlz.;
Xg ,n-12
-2%g 1
*g, 1417

When the rth rib falls between stations, [I‘r] has the following form:

[+ -

|-0.

el -ad) na -

rel-a) 742

(43)
{N+2)x(W+2)



18

Rules for proper positioning of the elements in the [Pr—J matrix are glven

in the section entitled "Mechanics of Application.”
the [m] matrices occurring in equation (30) is

‘_(P2 ) N+lJ

NACA TN 3640

The expanded form of

(4ka)
(N+1)xL

{4hp)
(N+1)x1

(4he)
(N+2)x1

-
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Also

Po,§

19

(45a)
(N+1)x1

(45D)
(N+1)x1

(45¢)
(W+2)x1
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20
where -
aﬂp
Pk,n = - (46)
boom
\:
For the entisymmetric case:
L 2 1 ]
1l -2 1
Dyl = . . s i
]
1 =2 1
1 -2
! 1]
o L -
1 -2 1
YR AR
d|
1 2 1 (N+1 )|
1 =2
e l—
1 -1 ]
1 -1
D = D)+ = e (l"9)
[ 5:| [ ] 1 .1 (N+1 )y
1
. 0.4




NACA TN 36L0 al

_ak,l |
8,2
- 0
] o
8 ,N-1
Sen, N
oy, '
8,2
[ak] - C e (51)
Nx(N+1)
e, N-1
1
i 5%,8 O
[ -x-] seme as symmetric case
0,1 '
8,2
[ﬁo] _ o o e * . (52)
20, -1 (41 )x(N+1)
3°0,¥
i 0]




22 NACA ™ 3640

- -1
Bs,l
58,2_ '
(5] - (53)
e o . NXN
i a1
-2Xg 1 Xg,1 —
Xg,2 -2X%g,2 Xs,2 o
*s,5 ~g,5 ¥s,3
L&J = C e (54)
(N+1)xw
Xg,N-1 -2Xg,N-1 *s,N-1
¥3,N ~Xg,N
L B *g,N+1 |
'axs,la xs,12
xs,22 '2xs,22 xs,za
*g,55 -2%g,5% %, 57
[st} - ' . (55)
(N+1 )

2 2 2
Xg,N-1 g N-1 Xg,N-1

2
xg,N -2Xg ,N2

2
g, N+l |

The matrix [l“r] hes & form similar to that of the symmetric case except
that it is of order (N+1)x(N+l). The proper placement of the elements

rv
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in [Fr] will be glven in the section entitled "Mechanics of Applica-

tion." The expanded form of the [q:l and [p] matrices occurring in
equation (30) for the antisymmetric case 1s

Po,2
®0,3
EPO] = (56;';])_
. N
| %0, 341
P1,1
P1,2
[q)l] - (56)
. (N+1)x1
| P, 041
r -
92,1
P22
= (56¢)
[Cpgjl . (N+1)x1
| P2, N+1 |
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(57a)
Nx1

(57b)
(N+1)x1

(57¢)
(N+1)x1
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Inversion of [A] Matrix

25

The next step in the derivation is the solution of the system of
equation (30). This may be done either by inverting [A] at once or

alternatively by first eliminating E%ﬂ (es in ref. 8) and then

inverting a matrix of roughly two-thirds the order of [A]. The most
economical choice depends on the number of stations and the computing

facilitlies available.

The result of eliminsgting E%J is

- 1 -1
Ay - Aoheo A015‘*12‘ 10%00  Poz|[PL 5
= o e e e -] =€
o1, -1
Asy - Boofoo Aorl Aop - Axgfoo Poz| [P2
or say
B i
Bll Bl2 Cpl Cl I O Po
= 63
Bo1 Bopf |92 2 O I|ipy
Po

(59)

where Eﬂ is the identity matrix. There would hardly be any advantage
in eliminating [cpo:l 1f setting up the [Bi J] matrices for computation

were as complicated a task as 1t looks. However, the terms which involve
products of Eﬁq] mmgtrices can be consgilderably simplified snd lead to

the following results:
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P -
b -
J - [
] -

o] -
] - (10 -3 Bl (R -5 B (- B
|-
y

T

'
Laprery |
:é"

([M B (-5 B (B ')'
)
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6] - efe])

(i I Z[*ﬂ[ﬁ] e H)(&o] Z[]) ([]H -2 [ -

Note that there are esgentlially only three dlfferent matrices within
parentheses and that one 1s the inverse of s diagonal matrix. Also

o] - (b ] - 5 ) (o 5 B B

ol -~ (k] S R B e ) (] - S )

where in the symmetrlc case

L1232 5 2
2 2 2
1 2 3 L .
-1 12 3
[Do:l=
1 2
1

(60
=)
L (61)
(62)
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and in the antisymmetric case

—1231+... N
12 3% ... N -1
1
D = (63)
[2o] L s s
1 2
i 1

In order to complete the solution for [q)] in terms of [p] , the
matrix which must e inverted is

By Bo
[5] - (64)
Bop Bop
The solution may then be written
- _ - - A\ ~ -
P AR -1 11
% (c's )cic'B Ao i_o o|\ |»g
o | = &3 ! +1 0 10 of]lp (65)
t (ce)' i Bt E t
P H o to of/|m
or
— eofal-1
[o] = <[] ™[] (66)
Wwhere

o] - [ (&)
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- (B (] S BB @

In certain cases, the preceding operations will have to be modifled
because the matrices which are to be inverted turn out to be singular. In
particular, this may happen when the wing has a pointed tip. The reason
the matrices are singular is that at some ststions the three unknown sets
of P values are linearly dependent; in other words, the deflection is

overdetermined at that station. The detalls of the remedy for this situa-
tion are given in the section "Mechanics of Application."

Atter the [A]l matrix is obtained, it is modified slightly.
According to the derlivation there are rows and columns of [A] -1 corre-
sponding to wk,N+l and Pk,N+l These three rows and columns are to be

deleted. Also, in the symmetric case, it will prove convenient to insert

two rows of zeros corresponding to 90,0 and 91,0 and two columns of -
zeros corresponding to 0,0 and P1,0° In the antisymmetric case,
_insert a row of zeros corresponding to ¢O 1 and s column of zeros corre- »

sponding to Py 1* The meaning of [@] and Ep] is altered but the
3
notation will be kept the same in what follows. Also, the factor e

(see eq. (30)) is included in the modified [A]™1 matrix. The result is
a symmetric matrix which will be called [g]. Equation (66) becomes now

)~ [:I6) )

Equation (69) gives generalized deflections in terms of generalized loads
and essentially expresses the solutlion to the load-deflection problem.
For some aspplications (finding modes and frequencies, for ingtence), it is
convenlient to proceed from this point keeping the P &8s generglized

deflections. Only the problem of finding influence coefficients will be
worked out in detail.

Influence Coefficients . e

A set of reference points on the plan form of the wing must be chosen _
with respect to which the metrix of influence coefficients will be glven. .
The reference points on the plan form of the wing are located in terms of

the set of numbers gn,m which give the dlstance from the y-axis to the
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mth reference point on the chord at the nth spanwise station. (See
fig. 7.) A quantity referring to a particular reference point will be
labeled with the subscripts n,m. There may be any number an) of ref-

erence points along the chord at stetion n but the deflections at only
three of the reference points are independent in the parsbolic theory
(two in linear theory).

The relation of [p] toc the concentrated loads Pn,m at the refer-
ence points can be obtained through the definition of Px,n in terms of
IIP; that is,

_ aI;p

Pyon = (70)
P2 '
In terms of Pn,m. and Wn,m (the deflection at reference point (n,m)),
the expression for IIp is
Ilp = -Z Wn,mPn,m (71)
n,m
or
I, = ‘Z (q’O,n' +&nm®P1,n + g‘n,mecf’.?_,n):‘?n,m (72)
n,m
Then from equation (70),
Pen =5  (bnm P (73)
k,n = n, n,m

which may be written in matrix form as
] - [=][e] | (74)

or in expanded form, for the symmetric case,
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5,0 1 1 ... 1 Po,1
Po,1 1.1 ... 1 T Po:a
. ()
Po,N 1 T ... 1 "i":f?
e 1,1
P10 to,1 fo2 * - 0,4 Py,2
1,1 b B2 o0l :

) ) 1% Pl,d:l
<= {15}
' - g g ce g .
P1,x N,L °N,2 N,ay B
CCTT I
P
P2,0 !o’la !o,ga . e 50,502 N:2
P2,1 £, .2 g 2 L. g 2 .
'. 1,1 %1,2 ley meaﬂ_
¢ 2 2 2
P2 | b1t B2t ot By
In the antlsymmetric case, [H] is glven by
1 ... 1
1A I ... 1
;
1 S |
!
Y1 b1 o b
R N
] - - (76)

2
£1,1° 81,2 - 0 - By
Lo

2 .
t2,17 %2,2° v v Bag i —

: 2 2
] M ettt PEgy
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From the definition of w in terms of @ (eq. (1)), the following
matrix relation msy be deduced:

] - B m

where [W} is a column matrix whose elements Wn,m are arrang=d in the
same order as the elements Ph,m in [3]. (See eq. (75).) From equa-
tions (69), (T4), and (77), it is evident that

[} = [elle) (78)

where

[¢] - [=]'[el[=] (19)

The matrix [G] glves the desired set of influence coefficilents.

As defined in this paper, the influence coefficients glven by equa-
tion (79) are the deflections at symmetrically plsced reference points
(with respect to the center line) due to symmetrically placed unit loads.
There is one instance in which the definition may be a little ambiguous
and that 1s when the load is on the center line in the symmetric case.

In this case the deflections at all reference points are to be interpreted
as due to a double load on the center line since now the two unit loads,
symmetrically placed, have moved into coincidence. The cbvious aslternate

definition would not result in & symmetric [G] matrix.

Equations of the Llinear Theory

The equations of the linear theory may be obtained from those of
the parabolic theory by setting ¢2,n = 0 and omitting the equations

OIT
a¢2,n

identical. In this case the matrix which has to be inverted is either

= 0 at the outset. The steps in the subsequent derivation are

Aop  Por

[A] ) Ao A1 (60e)
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or

[8] = [B1a] (80b) -
In the latter alternstive (%hat is, when [B] is inverted), EA]'l cen -
be obteined from the eqpatioﬁ

[A]'l = |mmm———- *i ------ 4 | ==- e (81)

where now

[c] = [ea] (62)

The same modification of [A]'l as is described in the paragraph preceding -~
equation (69) is again made to obtain [g]. As before .

(6] - [+ [<][] (85

where EH] is the same as 1n parabolic theory except the last N rows
are omltted.

Adsptation to Other Loading or. Support Conditions

A knowledge of the loasd-deflection characteristles of the wing spart
from the fuselage is often insufficient for accurate aseroelastic analysis
of the airplane. Howéver, the effect of attaching the wing (which
includes the carry-through structure) to the fuselsge at a number of sim-
ple supports (no moments transmitted) can be accounted for by a feirly
gimple modification of the influence coefficients obtained by using the
standardized supports. The detalls of the analysis are given in
eppendix A.

In the analysis of the present paper, the carry-through structure
has been assumed to be part of the wing. The assumption is valld if
the carry-through structure is not very different from the wing struc- *
ture; for example, this would be the case 1f one cover sgheet and some
stringers were cut out but the spars were continued on through. If
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the carry-through structure is appreclably different from the wing struc-
ture, then a modified analysis is called for. The analysis of the present
paper could probably be adapted to the case in which each half-wing is
attached to a flexlble gtructure characterized by a set of influence coef-
ficlents which involve rotetions and couples as well as deflections and
forces at the polnts of attachment of the half-wings.

For some applications it is necessary to know the deflections due to
a unit couple applied at some point along the trailing edge (as caused by
an alleron, for example). If the trailing edge 1s parallel to the y-sxis
and the point of application of the couple falls on a station, then the
solution to the problem is simple. A reference point is introduced off
the tralling edge at the reflection of some reference point on the chord.
Equal and opposite loads at these two referenceé points produce the same
effect as a couple applied at the trailing edge within the framework of
the parabolic (or lineesr) theory. The deflection due to a load at the
reference point off the wing is found in exactly the same wasy as though
it were on the wing. In case the trailling edge is swept or the couple is
applied between stations, the correct procedure for finding the deflections
due to the couple can be found by recourse to the energy method (find ILQ-

DISCUSSION

Approximations Involved in the Theory

The approximaetions involved in the present theory are, for the most
part, consequences of restrictions placed on the displacements at the
outset. Some of these spproximations, such as the neglect of transverse
shear deflections, are quite common and need 1little discussion but same
others, more or less pecullar to the present theory, require some words
of justification and some warning as to the limitations they place on the
theory.

The restriction to parsbolic (or linear) chordwise deflections has
already been used sutcessfully in the case of a solid plate (ref. 8). In
the present case, the ribs near the root are not expected to bend appre-
ciably because of the restraint offéred by the fuselage. For a wing of
low aspect ratio, nearly the whole wing 1s within the region of influence
of the root restraint. Also, since the rlbs have zero (or, at most, small)
bending moment at either end, the chordwise bending moments are much less
than the sparmwilse bendling moments so that, if the stiffnesses in the two
directions are of the seme order, the chordwise curvature should be much
less than the spanwise curvature. Thus, provided the ribs are not too
light, it seems Justifiable to assume that the chordwise deflections may
e well approximsted by a parabola, or even by a straight line.
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If the wing is perfectly symmetrical, top and bottom, so that the
middle plane may be taken as the neutral surface, then the stretching of
the ."neutral" surface is certainly extremely small (zero within the
framework of small-deflection theory) when the wing is bent under lat-
eral loads. However, 1f there are cutouts on the top or bottom of the
wing or various other asymmetries, then the situation is not nearly so
clean-cut. The difficulty is that there does not necessarily exist a
surface which remains unsitretched (even in small-deflection theory) when
the wing 1s subjected to a lateral load. ~As an exaggerated example,
suppose there are many spanwise stiffeners on the top of the wing and
many chordwise stiffeners on the bottom. In such a case, it would seem
reagonable to specify the u and v dilsplacements with respect to two
surfaces, one on which u is zerc and the other on which v is zero,
rether than with respect to a single neutral surface on which both u
and v are zero. That such a cage would arise in practice is unlikely,
but at least 1t shows the need for meking some reasonable assumptions.
The only way really to avoid the necessgity of meking engineering judg_
ments with respect to the choice of & neutral surface would be to go to
some more exact theory in which more complicated expressions for speci-
fying displacements are assumed. Barring that, the locus of the principal
‘axis of inertia of the chordwise cross sections seems to be a reasonable
choice. The regulting influence coefficients probably will be in error in
the neighborhood of & cutout or other discontinuity, but the overall
results should be accurate.

The method of analysis of the present paper has been motivated by the
resemblance between the low-aspect-ratio wing and the plate lnasmuch as
they are both thin and flat. However, since the carry-through structure
mey not even remotely resemble & plate, the validity of the method must be
examined on that point. The criterion is whether the assumed form of the
displacements can accurstely describe the true shape of the deformed struc-
ture. If, for_example, the carry-through structure is composed of three
beams which are the continuation of three wing spars, then the deflections
of these three beams can be described exactly in terms of the three func-
tions Pqs @l{_and Pp of the parabolic theory. In this case, there is

no question that the analysis is adequate as far as the carry-tlirough
member is concerned.’ However, the chordwise location of the continuous
spars could concelvably be such that the deflected shapes of the inboard
chords of the wing could not be approximated very well by e parabols even
when the loading on the wing is reasonably well distributed. In addition,
the discontinuities in the structure cause dlscontinuities in the higher
derivatives of ¢, and this may cause an appreciable error in the differ-

ence equlvalents of the lower derivatives used in the analysis.
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Refinements Over Beam Theory

Some of the ways in which the present theory falls short of exact-
ness were pointed out in the last section. There. are, in favor of the
present theory, a number of refinements over beam theory which are either
manifest or implicit in the equations. The additional generality of the
more refined theory allows for restraint against warping of the root
cross section and for restraint sgainst anticlastic curvature at the
root. In a long beam these effects are felt only in the region near the
root, but in a low-aspect-ratio wing where the root chord mey be about
as large as the semispan these effects are apprecleble over the whole
wing. A glence et the form of the equations shows that bending (mo),

torsion (@l), and chordwise bending Qqa) are inextricably coupled

together; however, in simple beam theory, the equations are uncoupled
by virtue of the assumption of an elastic axis.

Comparison With Other Theories

In elther Levy's or Schuerch's theory the direct-stress-carrying
cagpacity and the shear-carrying cepacity of the sheet are separated.
The direct-stress-carrying capacity of the sheet is lumped in with the
gpars and ribs. This is a common gssumption in the treatment of semi-
monocoque structures with thin skin., However, when the cover plates get
thicker, and thus form & proportlonately greater part of the total wing
material, a more refined treatment of them is appropriate. Probably the
most important effect neglected in the thin-sheet gpproximation is the
coupling between spanwlse and chordwise stretching of the sheet - in
other words, the Polsson's ratio effect which produces snticlastic
curvature. In the present theory, a nearly exact expression for the
strain energy of the cover sheets is used. The accuracy of the result
depends on how well the assumed displacements approximate the true ones,
but does not depend directly on the thinness of the cover sheets. 8So,
at least in‘*the parasbolic theory, the Polsson's ratioc effect is taken
into account. Williams' method is the antlthesis of ILevy's in the sense
that primary consideration is given to the covers rather than_the spars
and ribs. However, Williams' method is not well adapted to the analysis
of a wing with a few heavy spars and ribs or with thin skin. At the
present time the ranges of epplicability of the several theorles have
not been well defined owlng partly to a lack of experimental evidence and
partly to the newness of the problem.

Some Possible Tmprovements and Extensions of the Theory

The effect of transverse shear deflections in the ribs and spars is
possibly the most serious omission in the present theory as it now stands.-
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For some configuratlons the effect of shear deflection in the ribs
would be more important than bending of the ribs. Experience may indi-
cate that for practical designs appreciable error is made by neglecting
shear deflections, but the extension of the theory to take this into
account has been left for possible future work. (See, however, ref. 5.)

The present method could be generalized to allow arbitrary chord-
wise bending. The generalization would involve replacing the double
integral for the strain energy of the cover sheet by a double sum. The
unknowns in the equations would be the values of W at many lattlce
points on the wing rather than the values of P at a number of span-

wise stations. The resulting theory would be similar to Willlams' theory
except that the ribs and spers would not be spread out to act with the
sheet.

Scme more preclse trestment of chordwise bending would be necessary
for a complete stress analysis of delta wings. The primary concern of this
paper has been deflection analysis and, aelthough the stresses can be estl-
mated from the deflections, a double numerical differentiation is involved;
consequently, the resulting stresses would be less accurate than the
deflections. The parabolle or linear theory would give either constant
or zerc curvatures of the ribs; thus, the theory would seem to be of
questionable value for determining stresses in these members. However,
in reference 8 a comparison of experimental results with the predictions
of the parabolic theory spplied to a solid delta plate shows good agree-
ment for the spanwlse bending stresses. o

MECHANICS OF APPLICATION

More theory and mathematical detaile have been given in the section
entitled "Method of Analysgg“ than are necessary in actuglly setting up
end solving a gilven problem. On the other hand, some troublesome points

also to cover these troublesome detalls.

Steps in Setting up Matrices of Structural Propertles

The following steps are used in setting up matrices of structural
properties:

(1) Choose & coordinaste system as in figure 5 with the origin on
the center line,
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(2) Choose & number of equally spaced stations along the half-span
as in figure 6. There may be some "natural” number of stations dictated
by the geometry of the structure but, in general, reasonable accuracy
can be obtained with about eight stations. For convenience, the points
of attachment of the wing to the fuselage should be made to fall on sta-
tions, if possible.

(3) Choose & neutral surface. The choice recommended in this paper
is the locus of the principal centroidal axis of the chordwise sections.
However, any discontinulties such as thoge due to cutouts and reinforce-
ments should be smoothed out. Of course, in the process of finding the
neutral surface the cross-section areas of spars and stringers, skin thick-
nesses, and so forth will be tabulated at the stations and half-statioms.
The effective cross-sectlon areas of swept spars and stringers should be
taken to be the actual cross-section areas (normsl to their own axls)

times e reduction factor of cos” Ay, Where A5 1s the angle of sweep of
the spar or stringer.

(4) Calculate tables of the coefficients &y n and ak’n_ljz,_ from

the formulas

= ’32 xkdx (k =0, 1, 2, 3, )4') (811-)

&,n = chn (n=0,1,2, . ..N)
1= [P 1 skax (k =0, 1,2) (g5
ak,n-l.g - Dn.l? (D. = O, l, 2, s e N-l) 5

C1

where (see egs. (5) and (7))

P = T—E_uz(’“uzuz + 572%) (&)

These integrations can be done numerically if necessary. In case there

are discontinuities in the cover stiffness D, some adJustment of the

values of & n at the station nearest the discontinuity is necessary.
2

Iet the Jump in & be 4y (positive if ay increases across the dis-
continuity for increasing x) and let €d be the absclute value of the

distaence between the discontinulty end the nearest station m; then,
(2) If the discontinuity in ay is a distance ed to the

left of station m, replace 8k .m by 8, m - (%-- )Ak'
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(b) If the discontinuity in &), is a distance ed to the
1
right of station m, replace ak,m by ak,m + (§ - )A%r

(e¢) If the discontinulty is at station m, use the mean value

A simllar rule holds for adjusting the values of the coefficlents
ak,n+£' It is probably sufficiently accurate to obtain the values of
2 .

the Jumps &, graphically. o
(5) Calculate the coefficients Bg pn for each spar and stringer at
s
each station from the formuls

Bs,n = (EIs)n cos? s (87)

where I d1is computed for a cross section perpendicular to the spar about
an axis lying in the neutral surface and 'XS 1s the angle of sweep of

the sth spar (stringer); see figure 5.

(6) Tabulate the coefficients Es,n‘ The rules for finding the
values of B in terms of B are

(a) TIf the left end of & spar (stringer) falls within e of

2
station m, let edy; be the signed distance from station m +to the

end of the spar; then,

ﬁs,m = (% - dﬂ) Bs,m (88)

(b) If the right end of a spar falls within %e of station m',
let edg’

spar; then,

be the signed distance from station m' +to the end of the

Es,m' = (% + ds’)ﬁs,m' (89)

(¢) Por m<n<m',

Bs n (90)
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(4) If the spar crosses the center line,
Bg o = 28 (91)
s,0  2"s,0

(e) Elsewhere,

Bs,n =0 (92)

Sometimes ﬁs willl have to be extrapolated to obtein a value at a ste-

tion point. For a light stringer, little error 1s committed by assuming
the stringer to terminate at the nearest half-station on the outboard
end; in this case, B is the same as B at any station (except at the
center line) to which the stringer extends.

(7) 1Iet Xs,n be the distance from the y-axlis to the sth spar
(stringer) at station n. (See fig. 5.) Tabulate

(a) Xg for the unswept spars and stringers

(v) Xg,n for the swept spars (stringers) including values for
Xg,.1 if Bg,0 #0 and xgy,1 if Bgy £ 0. In any case, the
values for xg; need only be tabulated for one station beyond the
ends of the range for which Bg # 0. Values of xg at stations
off the span of the half-wing are to be obtained by extrapolation
(8) Integrate the stiffnesses of the ribs and chordwise stiffeners
acrosg the chord to obtain a set of values of 7r according to equa-
tion (13). For a rib on the center line, take 7, to be one-half the

value given by equation (13). For those ribs or stiffeners that fall
between stations, the numbers 4, (where €dy 1s the distance from the

first station to the left of the rib) should be recorded.

All the necessary informstion has now been extracted from the design .
of the wing and arranged In tables of numbers.

(9) Set up the [ag], [ég], and [30] metrices from the values of
ay. at the stations and the quﬂ matrices from the values of a; at

the half-stations according to equationms (36) to (39) (symmetric) or
(50) to (52) (antisymmetric).
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(10) Set up the [Es] s [_Xs] , and [XSE] matrices for the swept

spars and stringers. For spars or stgingers not running the full length
of the span, some of the columns in (5 will be zero, in which case the

elements 1n the corresponding columns of [XS] and [Xse:l can be set
equal to zero without affecting any subsequent result. For unswept spars
and stringers, xg = Constant; thus, [Xs] = Xg [Dl] and [Xsa:l = xsa[ng.
There is no need for setting up the [Xs] and [XSEJ matrices in this

case. A considerable saving in computational labor 1s afforded by
including the effects of the unswept spars and stringers in with the
skin (no approximations involved) in the following way: Set up the

matrices [Z EB], [Z Esxs], [Z:Esxs%’ lz_ﬁsxsﬂ, and

[Z Esxle] (which will be disgonel matrices of the same form as [ﬁs] )

Add these matrices directly to [9'0] B [a]:' > [8.2] 3 [aﬂ » and [&lJ 3
respectively (but not to [5'1:] 5 [akﬂ , or [ﬁoj) .

(11) Set up the mstrix I-_Z I‘r] from the table of values of 7,
and 4, where each rib or stiffener contributes terms to the elements in

the matrix- |:Z_ l"r:l as follows:

If the rth rib (stiffener) is between stations m eand m+l, a dis-
tence ed,. from station m, then the rth rib contributes the block of

terms
73:'( - dr)a 7rdr( = d'r)

7rdy (l - d'r) 7rd'r2

where the upper left-hand element is in the (m+l)st row and column in
the symmetric cage and in the mth row and column in the antisymmetric
case. For ribs at a statlon, 4, = 0. There is no contribution from a

rib on the center line (station 0) in the entisymmetric case, and in
this case those ribs between the center line and station 1 contribute

only to the element in the first row end column of [Z I‘r]. In either
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the symmetric or antisymmetric case, [i—— 'l 1s a square matrix which is
either disgonsl or has numbers on the principsl disgonal and the two diasgo-
nsls next to it. In the symmetric case, [E F%] is an (N+2)x(M+2) matrix

and in the antisymmetric case it is an (N+1)x(N+l) matrix. In either case,
the last row and the last column are filled with zeros.

Celeulation of [A]™ Matrix

There are two alternative procedures for obtaining the inverse of
[ﬁﬂ. The first alternative involves setting up a matrix of the order of

about 3NX3N and inverting 1t. The second alternative involves setting

up & matrix of the order of about 2NX2N and inverting it and also setting
up three auxiliary matrices and performing several matrix multiplications
and additions subsequent to the inversion operation. The most economical
choice between the two alternstives depends on the computing facilities
avallable. In general, the first alternstive involves the least nonauto-
matic computing and should be preferred when good high-speed computing
equipment is available (provided N is not too large). The second alter-
native 1s also suitsble for automatic computing, but involves the setting
up of some additionsl matrices before the work is ready for the machine.

First alternative.- Using the results obtained thus far, form the

matrices [éii] according to equations (31). Note that the summations

should be made only over swept spars and stringers if the effects of the
unswept spars and stringers have been included in the [ég] matrices

as stated in step (10) for setting up matrices of structural properties.
Combine these matrices into the matrix [A] according to equation (30).
The next step is the inversion of the matrix [A]; however, in certain

cases this matrix will be gingular. The proper way in which to modify
[A} before inversion in certaln of these cases is listed as follows:

(1) In case only two spars (which do not taper to zero) extend to
a polnted tip, strike out the last row and colum of [A] (corresponds to

setting ¢2,N+l = O).
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(2) In case only one spar (which does not taper to zero) extends to a

pointed tip, strike out the last row and column in [AJ and also the row
and column in [A_l containing the last row and columm of [All:l (corre-

sponds to setting Pl = Pomel T O).
2 )

(3) In case all spars taper to zero at a pointed tip s strike out
the rows and columns in [AJ which contain the la.st rows and columns in

[AOO] [All] and [A22:l (corresponds to setting q)o M1 = %1 SN+l T
o).

Po Ns1 =
(%) If there is a carry-through bay with only two spars and no
cover sheet or ribs, strike out the rows and columns in [A] which con-

teiln the first few rows and columns in [Aez:l The number of rows and

columns deleted is the number of stations within the carry-through bay
{(counting the station at the center line in the symmetric case but not
counting it in the antisymmetric case). This corresponds to setting
cpg,o = CP2,1 T ... 0= qaz,m = 0 where m 1s the lest station within the

carry-through bay. This case may occur in combingtion with the first
three cases.

Second alternative.- Form the [Bi J] matrices according to equa-
tions (60) and the [Cl] and [Cg] matrices according to equations (61).
Combine these matrices to form [B] given by equation (64) and [C]

given by equation (67). The next step is to obtain [B] -1, Here again,
however, the matrix may be singuler. The sppropriate modifications to
[B:l 1f this is the case are as follows (where the cases are numbered es
in the first alternative):

(1) Strike out the last row and column in |B| and the last row
or [c]. -

(2) Strike out the last row and column in [B] and the row and
column in [_B] containing the last row and column of I:Bll] Also

strike out the last row of [Cl] and [CE]
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(3) Strike out the last row and column of all matrices appearing
in equations (60), (61), and (68) including <[ao:| + E [ES]) and proceed
8

as usual.

(4) Strike out the rows end colums in |B] which contain the first
few rows and columns in [?22]. Strike out the first few rows in [?é].

The number of rows or columns to delete ig the same as in case (4) in the
previous section.

After elither the [?] matrix or the modified [?:l matrix has been

inverted, form the [AJ'l matrix in equation (66) using the definition
given by equation (65).

The effect on the inverse of EA] of a modlificetion in the struc-

ture.- If the [AJ"l matrix has been computed and some change in the
structure is made that affects only a few of the elements in [A], then

the work of obtaining the new inverse matrix can be greatly reduced by
making use of a method given In reference 3. The new inverse is obtained

exactly whether or not the changes in the elements of [A] are small.

This method would be particularly useful for finding the effect of modi-
fying one or two ribs, or a spar over a small portion of the span.

Calculation of the [g] Matrix

According to equation (66), which is

[q;J =& [A] 'l[p:l (93)

there are rows and columns in [A]'l corresponding to . el and
J
Pk,N+l' If these rows and columns are not already missing in [A]'l
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by virtue of their deletion under case (1), (2), (3), or (4) of the
last section, they must now be eliminated. One way to locate the rows

in question 1is to write down the column matrix [cp:] There are as many
rows in [cp] as there are in [A] -l Thus ; if no rows and colums in [A]
have been deleted, then the rows to be deleted in I:A] -l are in the
position marked with an asterisk. The corresponding colummns in [A] -t

are also deleted and the result is a symmetric mgtrix.

Symmetrical Antisymmetrical

casge case

- - _ _
90,1 %,2
®o,N Po,N

Po,N+1] * Po,N+1|*
P11 ?1,1
P, PN

D1, N1} * P1,NeL]*
P20 o1

P N %o

Po,N41} * cP2,N+1_J*
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In addition to the foregoing modifications, two rows and columns of
zeros should be inserted in the [A] -l matrix in the positlons marked

with an asterisk in the symmetric case. In the antisymmetric case,

[A]‘l is t0 be bordered on the top and left by a row and column of zeros
as indicated.

Symmetrical Antisymmetrical
case cage
o IE o |*
90,1 0,2
%,N Po,N

£3

0 P11
?1,1 .
o PN

1,N 9’2,1
®2,0 .
o ’ q)Z,N
L2,N - =

Finally the modified [A] =1 matrix is multiplied by 63 and the
result called [g] as in equation (69).

Influence Coefficient Matrix

Choose a set of reference points on the plan form of the wing for
which influence coefficients are desired (see fig. 7). Include among
them the points of attachment of the wing to the fuselege. These ref-
erence points must be at the spanwise stations, but there may be any
number of them along & chord at a given station. Construct the matrix

[H] (given by eq. (75) in the symmetric case or by eq. (76) in the
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antisymmetric case) from the values of gn n which are the distances
J

from the y-sxis to the mth reference point on the chord at station n.
Calculate the influence-coefficient matrix [G] fram equation (79).

The influence=~coefficient matrix for the wing supported at an arbitrary
number of flexlble supports mey be found by applylng the method glven
in appendix A.

CONCLUDING REMARKS

A method for obtaining influence coefficients for thin low-aspect-
ratio wings has been presented. The application of the method has been
orgenized as much as possible into a routine procedure.

The technlique for arriving at difference equations in matrix form
directly (rather than via differential equations) has afforded consider-
able economy of thought particularly in the treatment of boundary condi-
tions at the wing tip and in the handling of discontinulties.

The development (after eq. (69)) has been limited to finding influ-
ence coefficlents; however, all problems are not necessarily most con-
veniently handled by means of influence coefficlents. For instance, in
the problem of finding natural modes and frequencies, it is convenient
to introduce generalized inertia loads on the right-hand side of equa-

tion (69) in place of the generalized loads matrix [p]. The proper

matrix form for the inertis terms can be deduced from the expression for
the kinetic energy in discrete form. The frequencles and (generalized)
modes cen be found directly from the matrix equations wilthout any need
for finding influence coefficients.

Theoretical influence coefficlents obtained by the present method
have not yet been checked experimentally. Perhaps, for practical pur-
poses, a close check on influence coefficlents is too severe a criterion
for the usefulness of the theory. That is, there may be greater dis-
crepancies between predicted and experimental deflections due to a con-
centrated load than there would be if the load were more uniformly =
distributed. In case of serious discrepancles between predicted and

tion in the theory should probably be the first assumption to question.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Lengley Field, Va., January 31, 1956.
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APPENDIX A
INFLUENCE COEFFICIENTS FOR THE WING ATTACHED TO THE FUSELAGE

This appendix will be concerned with the problem of determining a
set of influence coefficients for the wing which takes into. account the
fact that the wing is attached to a flexible fuselage. These influence
coefficients will be determined by aeppropriately modifying the set of

influence coefficients [GJ appearing in equation (79). For present

purposes, the set of influence coefficients Ei] must include those

coefficients which refer to the points of attachment with the fuselage.
The only information about the fuselage necessary for the solution of the
problem is a set of influence coefficients for those points of the fuse-
lage where the wing is attached. The coefficients for the fuselage need
not necessarily be obtalned from as refined an analysis of the fuselage

as has been carried out for the wing. For example, they might be obtained
by approximating the fuselage by a simple beam in the symmetric case or by
a torsion box in the antisymmetric case, or they mesy even be taken to be
zero corresponding to the crude assumption of a rigid fuselage. The influ-
ence coefficients for the fuselsge are supposed to be obtained by assuming
the fuselage to e supported in such g way as to prevent rigid-bLody
motions. However,. the reactions at these supports must vanish when the
fuselage is su.jected to any self-equiliovrated set of loads.

Mathematical Derivation in the Symmetric Case
Let the influence coefficients for the fuselage which refer only
to the points of attachment of the wing be arranged in the mxm matrix,
[j]S (s for symmetric deformations), where m 1is the number of attach-

ment points. If necessary, rearrange the matrix [¢]S so that the

influence coefficients which refer only to the points of attachment appear
in the upper left-hand corner in the same order as the corresponding coef-

ficients in [J]S.

Let the reactions at the m supports be written as the column
matrix [ﬁ] and let [R]B be [3] augnented by zeros to make up g
colum of M elements where M 1s the total number of reference points.

Let the external 10ads be written as the column matrix [P] with M rows.

Let LW] be a column metrix of m rows whose elements are the deflections
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at the supports and let W be the columm matrix of deflections at all

M reference points on the wing where a given reference point is at the
point (¢,n). PFurthermore, define the following matrices:

[E]S matrixnof the flrst m rows of:;[ﬁJs

[TJ columm of m ones

[l] __ colum of M ones )

E] colunn of E's at the first m reference points (supﬁorts)
[;] colutm of £'s at all M referénce points

For symmetric loading the deflection of the wing is given by

[w] = [aJs([2] + [Rlg) + ¢[x] + e[] (a1)

The last two terms on the right are the symmetric rigid-body displace-
ments, namely, vertical translation and pitch. The deflection at the
supports only is

(7] - [ElelE] + (6l + ¢[T] + o[E] = -[lg[R] 2)

where [als is the mxm matrix in the upper left-hand cornmer of [Glg.

The last term on the right is the deflection of the supports calculated
by applying the (equal and opposite)vreaction forces on the fuselage.
From equation (A2), :

(T + [l)A = -B1) = [ « e[zl w o8] tao)

where now [T]-; [J]S + [@]S is a symmetric mxm matrix. The inverse

of [Tﬂ must be computed, but it is ordinarily a low-order metrix. From
equation (A3), the following equation is obtained:
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..[R:l = [T] 'l['G-:l S[P] + Q{T] 'l[i'] + B [T] ~l['§-] (Ak)

Inasmuch as the wing is in equilibrium under the loads [P| and [R],

the resultant vertical force and pitching moment due to these loads must
vanish; this condition ylelds the following two equations:

[I'[®]+ [1]'[®] = 0 (45)
(€] [r] + [e] [®] =0 (6)

where primes denote the transpose of a matrix. Combining equations (a4)
to (A6) gives the following two equations for the determination of ¢
and 6:

['[e] = ] =) el g [e] + ¢[x) [ 2 {x] + o[T] e} E] (o

5T - [ B ] « o) )« o[ 1)
T e + [ B - (0] - [ ERE)E s
9T e [ e - (] - (] B o

These equations must now be solved for { and 6. The following (scalar)
numcers have to be computed:
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o~ (ETETTDE EED - GTRIE)
* = Ef T i fgf : (a11)
- G o

Solving for { and 6 gives

ol - HEHIE (- RN e
ool - EEIEE - o - EPEJH o

With the help of the matrix [T]," -1 (Whi ch is [T]™! bordered by zeros
to make up an MXM matr i%) these equations msy be written

¢ = (] - ele]) ([ - [T )[P] (1)
- BT ) (@ - BAEE

where [I] is the unit matrix. Now that £ and 6 are known, [R]B
mey be found from equation (A4k) and is as follows

s - - e » (00 emm)(m ARIAND
PBIEY" - sBET) (1 - (e -
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Introducing these results into equation (Al) gives
0 = (] - sl {0 + (LI - o[ -
oBIET + B (- [ [egff)

or

(o] ] -

The square symmetric matrix [k]s whose definition is obvious from equa-

tions (Al7) and (Al8) is the required modified set of influence coeffi-
cients for the wing.

Results in the Antisymmetric Case

The modified matrix of influence coefficients in the antisymmetric
case is simpler because only one rigid-body motion is involved, namely
a roll. In this case,

e = (- ELANEL b I0] (£ - W) oo

where now Eﬁ] ig the column of 17's at the first m reference points
and [q] is the column of n's at 811 M reference polnts. Also

[z] - [J]A + [GJA (A20)

and

2= [0 . (a21)
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Exceptional Support Condlitions

In general the [?] matrix in equation (A3) will be nonsinguler,

but in certain special cases it will be singulsr and some modification
of the method will be necessary. These cases are listed as follows:

(1) The [@] matrix will be singulér 1f there are more than three

supports along any one chord in the parabolic theory (the number is two
in the linear theory) because the influence coefficients for four or more
points along a chord which deforms into a parabola are linearly dependent.

If the supports are fixed (so [J] = O), then [T] will be singuler.

There is no remedy for this sltuation other than to reduce the number of
supports - and this reductlion does not result in any loss of generality
within the framework of parabolic theory.

(2) In the symmetric case, 1if the origin 1s to be a fixed support,
then exclude the origin from the list of reference points. Since the
origin is fixed, ¢{ will be zero and one equation must be deleted from
the set of equations used to determine all the unknowns; this will be

equation (A5). The effect on the result, namely [st in equation (Al18),
is to make '

SO Nuice

(3) In the symmetric case of the linear theory, if any point along
the center line i1s to be fixed, then exclude this point from the list of

reference points. For purposes of formlng the [g} and [E] matrices,

choose a new y-axis passing through this point and set { = 0. Again the
effect on the result is to msake

w=p=0 %= te]" (=]-€]

(4) In the antisymmetric case, if the points (x=0,y=te) are to be
fixed, then exclude these points from the list of reference points and
set a« = 0 1in equation (A1Q).

Miscellaneous Remarks
In cases where some of the points of attachment cannot conveniently

be made to fall on a station, influence coefficients for these polnts can
be obtalned by interpolation from surrounding reference points.
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The effect of a couple applied at a point of attachment can be
roughly approximated by replacing the couple by equal and opposite forces
at nearby reference points. '

Clearly, a set of influence coefficients for the whole fuselage
could be modified in exactly the same way as in the previous section in
order to taeke account of the presence of the wing. From there it would
be only a step to obtain an overall set of influence coefficients for
the wing-fuselage combination, the comnecting link being furnished by the
expressions for the reactions at the points of attachment. Since the
required matrix manipulations are quite elementary, and the present paper
is concerned primarily with the wing, the details will not be glven herein.

A set of influence coefficients obtained experimentally could be
modified by the method given in this appendix to obtain a modifled set
agppropriate to some other system of supports than that used during the
test. The only provision is that the support system used in the test be
such that the reactions at the supports would vanish whenever the struc-
ture is subjected to a self-equilibrated set of loads. Fixing the struc-
ture at three points 1ls one possibility.
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APPENDIX B
EXAMPLE DERIVATION OF A MATRIX EQUATION

OIT
In this appendix the matrix form of the quantity s¢ks is derived.
,n
This quantity 1s the term contributed by a spar to equations (28). The
derivation will be made for the symmetric case.

From equation (22)

_ L [= 2 3 2 5 2
iy = _2e5(5s,0“’s,o * Bg,a¥g, 1 * ¢ - - F By We,N ) (21)
where
¥g,n = Xs,n-1 =~ Xg,n * Xg,n+l (B2)
Xg,n = P0,n + ¥g,nP1,n *+ xs,n?Qa,n (B3)

The boundary conditions are (from eq. (25))
= =0 = = =
®0,0 = ®1,0 ®,-1 = 0,1 P,-1 7 %1,1 P2,-1 = %2,1
(B4)
The first few of eqlations (B3) read

Xg,-1 = P0,1 + %Xg,-191,1 + xs,-laq)E,l

- 2
Xs,o B xs,O q)2,0 L (
B5)

_ 2
Xs,1 = P,1F ¥5,1%1,0 Y %5,1 2,1

X

Po,2 * *g,2%1,2 * xs,22‘P2,2

8,2
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The first few of equations (B2) read

¥s5,0 =Xs,-1 = g 0+ Xg,1

lks,l = XS,O - 2Xs,]_ + Xs,2 (86)
“’s,e - XB,l - 2Xs,z + Xs,3
oIT
The first two equations of S_ read (with the use of egqs. (B5) and
(56)) o
BIIS 1 f= - —
30 1 = 6_5'(255,0‘4’5,0 - 2Bg,1¥s,1 * Bs,z‘Vs,z)
J
. (1)
BIIS 1 f[= o7 _
acpo 2 = z(ﬁs,l’l’s,l - 2Bg,o¥s,2 + Bs,i‘ks,j)
? J
The first two equations of OIls read
Bcpl n
J
d _ - _ ]
VHS -+ Xg,-1 * Xg5,1)Bs,0¥%s,0 = 2X5,1Ps,1¥s,1 *+ ¥5,1P5,2Vs,2
1,1 &
’ (B8)
oIT : - — —
ﬁsz = ;%(xsﬁﬁs,l‘[‘s,l - axs,zﬁs,e‘*s,e + xs,ass,B*s,E)
2
)
oIT
The first two equations of S read
2,n
w
3 .
an;so ) -55(_&3’0255:0*5,0 T ¥s,0 Bs,l\ks’l)
>
> (B9)

oIT, - - oz
ac5’231 B %Kxﬂ,-lz + xS;la)ﬁS:O*S:O - zxs:leas’lts,l + Xg, 1 35,2*5,2
P)

m

7
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II
From equations (B7), the first two rows of the matrix > = ] mey be
O,n

written as follows:

oTIg -
2 -2 1 B ¥
9Po, 1 8,0 8,0
OITg 1 =
= 2 1 -2 1 B (B1O)
aq)o 5 > 8,1 "’s,l

Similarly, from équations (BS),

[arzs | N = 1L ]
N Xg,-1 * Xg,1 'sz,l Xg,1 Bs,O *s,o
, -
oIT 1
wls ) 5 x312 -2}:5;2 xS;2 Es}l *B’l (Bll)
2
J
L - L J' L
and, from equations (B9),
orrs | [ 2 2 1 Hy. ]
s 0 —22‘5’0 *s,0 BB,O ‘Vs,o
2
OIlg | 1 2 2 2 4, .2
=3 Xg,.1° + X 15 -2%g 3 Xs,1 Pa,1 ¥a,1
(12)

2 2 2
Xg,2° -Xg,2° Xg,p

L Y - L =

-2 1 pattern would be

Obviously, if more rows were written the 1
for

followed untll the last few rows, where the vanlshing of E
n > N changes the pattern. The first few rows of [y may be

written



¥s,0 E P,1] [%s,-1* %s,1 91,1
Vo1 -2 1 90,2, ~2Xg,1 ¥g,2 P2l
. 1 2 1 . xs,l —ZXB,Q- Xg,3
‘2xs,02 Xg,.1% + %5 17 ®2,0
xs,02 "?":s,l2 xs’22 q’a,l (B13)
xg,1° -2xg, 5% %5,5°

The three rectangular matrices appearing in equation (Bl3) are the
transposes of the three rectangular matrices appeering in equations (BlO),
(B11), and (Bl2). The form of these matrices in their lower right-hand
corners can be obtalned in a way similar to that which was Jjust used to
obtain the form in the upper left-hand corner. Equations (BLO), (Bll),
and (Bl2) can be written compactly as follows:

JIT,

| 3% | i €l_3 Do] [E s_-l ([DOJ’ EPO] * [XB]' [@l] + [Xse:l'[%]> (BL4)
BTl B BE]) o

_:Q’IZE ) 'e}?E{SZ] [ES] <E)°] [wo:l ¥ [XS]'[‘“] * [Xsa]'[¢4> (B16)

These equations can be further combined to give

[ AT R A AT R AT A L B8
AT A A A EA TCAf S (211)

J]

I SIS S IS B

A comparison of equation (BLl7) with equation (30) will show how the sth
spar contributes to the [Aiﬂ matrices defined in equations (31). Simi-

lar derivations were made for the covers and ribs but because the algebra
is long and tedious only the results are given in the text.
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... Torsion

.

. e
v .

Flgure 1.- Levy's ldedlization of a portion of a wing between spars and
ribs.
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Torsion

Figure 2.- Schuerch's ideslizatlon of a wing as a bundle of torsion tubes
and beams tied together by rigid ribs.



61

NACA TN 3640

Neutral surface

Parabola

(-l

Figure 3.- Diagram of neutral surface showing assumed parabolic chordwise
deflection shape.

<
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(a.) Symmetric.

Simple
supports

.....

(b} Antisymmetric,

Figure 4.- Symmetric and entisymmetric support conditions considered.
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Y

Figure 5.- Coordinste system and location of typical (sth) spar or
stringer on plan form of half-wing.

63
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— Y

Figure 6.~ Location of stations on plan form of half-wing.
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V Reference poinis at station n

X

Figure T.- Locetion of typical reference points on plan form of half-wing.
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